Bio Analysis

Many scientific endeavors are dependent upon accurate quantification of drugs and endogenous substances in biological samples; the focus of bioanalysis in the pharmaceutical industry is to provide a quantitative measure of the active drug and/or its metabolite(s) for the purpose of pharmacokinetics, toxicokinetics, bioequivalence and exposure–response (pharmacokinetics/pharmacodynamics studies). Bioanalysis also applies to drugs used for illicit purposes, forensic investigations, anti-doping testing in sports, and environmental concerns.
Bioanalysis was traditionally thought of in terms of measuring small molecule drugs. However, the past twenty years has seen an increase in biopharmaceuticals (e.g. proteins and peptides), which have been developed to address many of the same diseases as small molecules. These larger biomolecules have presented their own unique challenges to quantification.

The first studies measuring drugs in biological fluids were carried out to determine possible overdosing as part of the new science of forensic medicine/toxicology.
Initially, nonspecific assays were applied to measuring drugs in biological fluids. These were unable to discriminate between the drug and its metabolites; for example, aspirin (circa 1900) and sulfonamides (developed in the 1930s) were quantified by the use of colorimetric assays. Antibiotics were quantified by their ability to inhibit bacterial growth. The 1930s also saw the rise of pharmacokinetics, and as such the desire for more specific assays.[2] Modern drugs are more potent, which has required more sensitive bioanalytical assays to accurately and reliably determine these drugs at lower concentrations. This has driven improvements in technology and analytical methods.